Katie Barnhill
Grants
The project takes the first step in exploring the complex, socio-political environment that will determine the eventual success or failure of genetic biocontrol technologies to contribute to responsible aquatic invasive species management in the Great Lakes Region. Activities will engage key stakeholders not just to inform them, but to invite them to participate in governing this emerging area of research and development. An Advisory Board will guide our selection of stakeholders and the specific formats of our engagement. Key outputs of this project will include recommendations for expanding engagement to broader publics and communities, identifying education and outreach needs, and facilitating stronger connections between scientists and diverse communities.
The Agricultural DECision Intelligence moDEling System for huMan-AI collaboRative acTion Elicitation and impRovement (DECIDE-SMARTER) project will lay the foundations of democratized access to Decision Intelligence (DI) technology for stakeholders across the agriculture value chain, filling a longstanding gap between technology and decision makers. Through a process of participatory design, the project team will work with stakeholders in the sweetpotato value chain to: 1) Create a software asset that helps growers with an otherwise difficult decision; 2) conduct experiments that inform the best software interfaces possible to support complex agricultural decision making (through characterizing, understanding, and leveraging human cognitive abilities; 3) identify potential sources of bias in the DI process that would present barriers to democratized access to the technology; and 4) develop a reference architecture and prototype implementation of a modeling, simulation, and visualization framework for implementing multiple DI models with agriculture stakeholders. The project will leverage the ongoing research, data acquisition, and stakeholder efforts by the Sweetpotato Analytics for Produce Provenance and Scanning (Sweet-APPS) team, a multi-disciplinary endeavor that aims to reduce agricultural waste and maximize yield for North Carolina������������������s sweet potato growers.
���������������� Barnhill-Dilling will collaborate with UCSD colleagues to develop an online survey to solicit feedback from members of the public about how they would prefer to be engaged throughout the development of gene drive technologies
Genetic engineering (GE) is at a critical crossroads as new methods, such as gene editing and gene drives, have made the previously unimaginable possible. Scientists and farmers hope gene drives could control pest populations broadly defined (e.g., insects, fungi, weeds), which reduce crop production and divert agricultural resources better used elsewhere (Trivedi, 2018). Yet these possibilities may not come to pass in a world where consumers increasingly choose organic and non-GE foods (Kuzma, 2018), deformities in gene-edited farm animals are reported (Rana & Craymer, 2018), and gene-editing of humans is debated (Relagado, 2018). And those barriers do not even include the possibility that controllable gene drives are not technically feasible.
Biomanufacturing differs from chemical manufacturing as the process operations are significantly different in deference to the lability of biomolecules and cells. Biomanufacturing also differs in the expertise needed for designing, developing and implementing bioprocesses as well as the nature of safety and ethical issues that must be addressed. In the nascent industrial biotechnology sector, the pace of change and innovation, along with societal impacts, must be part and parcel of workforce training and education. Rather than develop separate educational programs for molecular biotechnology, bioprocessing and the ethical issues related to the field, we propose to provide an integrated platform, based on the best pedagogical practices and educational technologies (e.g., including the use of augmented reality for remote laboratory training) that brings workers up-to-speed and helps them maintain the needed expertise to be effective in this emerging sector. BIT (https://biotech.ncsu.edu/), BTEC (www.btec.ncsu.edu) and GES (https://research.ncsu.edu/ges/) at NC State have considerable experience in this type of education for our campus and beyond, and propose to leverage this experience to contribute to the BioMADE initiative. This integrated educational training will help build a sustainable, domestic, end-to-end bioindustrial manufacturing ecosystem that will enable domestic bioindustrial manufacturing at all scales, develop technologies to enhance U.S. bioindustrial competitiveness, de-risk investment in relevant infrastructure, and expand the biomanufacturing workforce to realize the economic promise of industrial biotechnology. Recent attention to issues of Diversity, Equity, and Inclusion (DEI), and broader societal awakenings of academic and corporate responsibility have raised important questions that reach well beyond our laboratories, classrooms, manufacturing facilities, and into society. The current and future biomanufacturing workforce, need to be prepared for these complexities. The workforce training and education package developed here will be sensitive to student/worker time commitment and be maintained such that emerging developments and innovations can be readily incorporated.
Jason Delborne, Professor of Science, Policy, and Society in the Department of Forestry and Environmental Resources, and S. Katie Barnhill-Dilling, Senior Research Scholar at the Genetic Engineering and Society Center, will collaborate with PI Smanski to organize and facilitate a series of four stakeholder workshops during the two-year grant period. The workshops will occur at the University of Minnesota (or virtually if necessary) with a diverse set of stakeholders identified by project team members and stakeholders involved in early workshops. The overarching goal of the workshop series will be to produce a set of guidelines for genetic biocontrol of invasive carp that align with the Technology Readiness Level (TRL) framework. Each workshop will build upon prior workshops to refine the guidelines and expand consideration to a suite of related technologies.
The Inter-American Development Bank (IDB) has (not yet publically) called for bids on a two-year consultancy to assess and advise regulatory reform pathways for emerging agricultural biotechnologies in Latin America and the Caribbean. The main issues to be studied under the consultancy are: ��������������� Current Policy Evaluation: including existing agricultural biotechnology policies and cost/time necessary to bring a product to market in identified regional states, policy trends and tendencies of select major trading partners (USA, EU, China, Japan) and international bodies (e.g. United Nations Convention on Biological Diversity), gaps in identified regional state policies to address process and end-product distinctions with next-generation gene editing methods, and the current CRISPR licensing structures for private firms and non-profit/governmental bodies seeking to eventually translate R&D output for commercialization; ��������������� Forecasting and Future Policy Scenario Analysis: including targeted crop-country case study examples with emerging next-generation biotechnology products to illustrate economic, trade, and social consequences of potential policy directions; ��������������� Identifying Bank investment priorities: including documentation of regional gene editing product developments, key capacity deficits, and future opportunities for IDB investment in human and physical capital. Focus countries for the regional analysis will include: Argentina, Brazil, Uruguay, Paraguay, Bolivia, Colombia, Peru, Mexico, and Honduras. Data collection will include extensive literature survey and policy review, key informant interviews (by phone and in-person), and additional travel as necessary to collect required primary and secondary data. The consultancy team will include experts from agricultural economics, public policy, international law, communications, and biotechnology. The required deliverables of the project include preliminary, interim, and final reports, an academic journal submission, country-specific policy briefs for key stakeholder agencies, content to populate an IDB website portal for project dissemination, and a dedicated report on Recommended Strategic Bank Investments in Agricultural Biotechnology. Three workshops will be held with stakeholders from IDB and focus countries, including a kick-off meeting, first findings presentation, and a final findings presentation.
Technological advancements involving gene drive applications in agriculture are proceeding rapidly (e.g., use of Drosophila suzukii or Diaphorina citri that feed on soft-skinned and citrus fruits). At the same time, there are gaps in governance systems and challenges to acquiring underlying data for risk assessments. It is also important to couple risk assessments with studies on public perceptions and acceptance, heeding past lessons learned from ag-biotechnology (1), and enhance risk assessments through informed interdisciplinary engagement (2)(3)(4)(5). Interdisciplinary exchanges may also help ensure that responsible research and innovation is realized in the case of gene drive applications in agriculture. In essence, diverse and multi-stakeholder conversations should be conducted alongside research endeavors aimed to conduct risk assessments for gene drives. This conference proposal aims to inform risk assessment research strategies for gene drive agricultural applications through interdisciplinary dialogue and exchange with diverse experts.