Skip to main content

Richard Venditti


Elis-Signe Olsson Professor of Pulp and Paper Science and Technology

Biltmore Hall (Robertson Wing) NA


Dr. Richard Venditti’s is the Elis-Signe Olsson Professor of Pulp and Paper Science and Engineering in the Forest Biomaterials Department at NCSU.  He has 26 years of experience in research in the areas of pulp/paper, bioeconomy, recycling, and environmental LCA. His research and teaching is involved in developing effective systems to transform renewable plant based resources into sustainable products. Venditti uses environmental life cycle analysis to guide and analyze research in bioproducts.   He is currently heading a multi-organization research project to understand the fate of microparticles from laundering in the environment.  He also is the principal investigator of a four year, $2.75 million United States Department of Agriculture program, entitled, Preparing Diverse and Rural Students and Teachers to Meet the Challenges of the Bioproducts and Bioenergy Industry.  Venditti teaches Unit Operations of Pulp and Paper, Process Control, Environmental LCA, and Introduction to the Bioeconomy classes at NC State.

Additionally, Dr. Venditti is the director of the Pulp and Paper Workshop at NC State, co-sponsored by the Technical Association of Pulp and Paper Industries (TAPPI).  He teaches the paper recycling portions of the course. He received a PhD in Chemical Engineering from Princeton University, was named a TAPPI Fellow in 2012, and was named a Fulbright Senior Specialist in Environmental Science in 2009.  He has over 150 peer reviewed publications and three patents. The Venditti-Gillham Equation was derived by Venditti to predict the glass transition temperature as a function of chemical conversion in polymeric systems and is often cited by name, with over 120 citations.  His technology was the catalyst of a start-up company, Tethis, that produces renewable products such as superabsorbent polymers from carbohydrates.

Area(s) of Expertise

Processing and utilization of natural polymers in new products and fuels, biodegradation of biopolymers, microfibers from laundering, the fundamentals of separation science in fiber processing, paper and cotton recycling, and the environmental life cycle analysis


View all publications 


Date: 02/06/19 - 2/05/29
Amount: $15,960.00
Funding Agencies: International Corrugated Packing Foundation (ICPF)

Our proposal will address all three ICPF priority areas. We will ensure that students learn and perform structural design, prototyping, and techno-economic analysis to understand how design, material types/additives, and processes (analog vs. digital) affects product performances, economics, and sustainability aspect. We will also encourage students to take elective courses in sales and marketing.

Date: 07/01/21 - 6/30/26
Amount: $238,500.00
Funding Agencies: US Dept. of Agriculture (USDA)

Interdisciplinary Doctoral Education Program will be created to focus on Renewable Polymer production using Forest Resources to Replace Plastics. PDs from three colleges will work together to train three Ph.D. students.

Date: 01/01/22 - 12/31/25
Amount: $2,998,710.00
Funding Agencies: National Science Foundation (NSF)

The objective of this proposal is to realize a circular economic system for manufacturing of soft electronics where a coordinated set of sustainable manufacturing processes and a select group of novel biodegradable and reusable materials are seamlessly integrated. It is anticipated that all components of the device can be either biodegraded or recycled/reused, and the project will explore different end-of-life pathways from both technical, economic, and environmental perspectives (e.g., through life cycle assessment and techno-economic analysis). Our team has faculty members from mechanical engineering, chemistry, chemical engineering, Industrial Engineering, and sustainable engineering, allowing us to propose a hybrid approach from material design/synthesis all the way to device manufacturing.

Date: 06/30/20 - 12/31/24
Amount: $27,222.00
Funding Agencies: VentureWell (formerly know as National Collegiate Inventors & Innovators Alliance)

Abstract: With the inevitable coming of the Green Economy, biomass valorization, use of renewable and bio-based materials and development of high-performance, recyclable, biodegradable and biocompatible products are nowadays’ challenges and opportunities to welcome a more sustainable society. Yet, to hasten its arrival, we must answer the daunting question of how we transform these challenges to opportunities? By educating new generations of students to the multiplicity of opportunities or “multiverse” of biomass, from a scientific and engineering perspective to an entrepreneurial vision. The Department of Forest Biomaterials has decades of expertise in conversion and valorization of biomass into new fuels/energies and high-performance biomaterials that offer solutions to greenhouse gas emissions, environmental and aquatic pollution and waste accumulation.We propose to leverage our graduate curriculum by adding an entrepreneurial and business competency to its strong scientific and engineering core. Our envisioned integrated program aims at educating Master and PhD students from NC State University, and others (via an online version) by training them in the principles, practices and methodologies of biomass valorization, conversion, and usage.

Date: 08/10/22 - 8/09/24
Amount: $50,000.00
Funding Agencies: Cotton Research and Development Corporation

To quantify the global consumer ownership of cotton apparel and home textile stocks and to evaluate the temporary climate mitigation benefits associated with this biogenic carbon in apparel, home textiles, and standing carbon stocks in the form of cotton bales using a dynamic life cycle assessment (LCA) model. Additionally, any benefits of carbon storage will be related back to a traditional LCA approach and implemented to demonstrate unaccounted benefits in a cotton apparel life cycle assessment.

Date: 07/01/21 - 6/30/24
Amount: $719,873.00
Funding Agencies: NCSU Consortium Sustainable and Alternative Fibers Initiative (SAFI)

The purpose of the Consortium on Sustainable and Alternative Fibers Initiative (SAFI) is to develop fundamental and applied research on the use of alternative and sustainable fibers for the manufacturing of market pulp, hygiene products and nonwovens. The idea for SAFI has grown out of societal needs for alternative yet sustainable materials. SAFI will study the potential of alternative fibers based on technical (performance), sustainable and economic principles.

Date: 04/01/22 - 12/31/23
Amount: $117,266.00
Funding Agencies: Cotton, Inc. (No pre-award costs/accounts allowed)

The overall goal for the project is to fully explore the utilization of waste cotton biomass for bioenergy and carbon removal across the entire cotton and apparel value chain. The project will include a characterization of the amounts of materials available at all stages of the value chain and techno-economic and environmental life cycle analyses of all identified combinations of cotton material-final applications. We will also prioritize these combinations in terms of potential for commercial success/environmental benefit and define areas of further research that will promote these technologies.

Date: 01/01/22 - 12/31/23
Amount: $166,889.00
Funding Agencies: Cotton, Inc. (No pre-award costs/accounts allowed)

The overarching goal of this project is to develop a chemical platform based on cottonseed oil to produce functional finishes for cotton apparel. We will evaluate cottonseed oil as the basis for the development of bio-based finishes as an alternative to petroleum-derived fabric finishes such as softeners, cross-linkers, and water repellents. The developed chemistry will be designed to maximize a strong affinity to a cotton substrate and not to hinder the fabric properties such as colorfastness, softness, or strength. This will provide a novel use for cottonseed oil and thus increase its value to the cotton producer and the cotton industry. Cottonseed oil (CSO) is projected to be an excellent starting material to produce softening and durable press (wrinkle resistance) finishes for cotton fibers. This is because refined cotton oil is almost completely composed of triglycerides of polyunsaturated fats (e.g., linoleic acid), which are an ideal platform for derivatization. This proposal proposes routes for converting CSO to reactive species that can be used in functional finishes along with an analytical platform to evaluate the performance of the finishes.

Date: 11/15/18 - 11/14/23
Amount: $238,500.00
Funding Agencies: US Dept. of Agriculture - National Institute of Food and Agriculture (USDA NIFA)

The objective of this proposal is to develop an education program for a new generation of researchers who understand the entire spectrum of biomass oligosaccharide production, animal production, and its analysis through a life cycle approach. Faculty members from two departments are proposing to create joint doctoral education program to address this Targeted Expertise Shortage Area (Animal Production) with Relevant Disciplines of (A) Animal Science, (B) Biotechnology, and (C) Renewable Natural Resources.Five focus areas are (1) Biomass oligosaccharide production; (2) Purification of xylose oligosaccharide; (3) Manufacturing and processing of animal feed; (4) Animal feeding and management; and (5) Life cycle Analysis. This program incorporates cross-disciplinary teamwork/advising, coursework in multiple disciplines, Preparing Future Leaders program, internship at a commercial farm, and exposure to biotechnology experts in industry.

Date: 10/01/22 - 9/30/23
Amount: $0.00
Funding Agencies: US Dept. of Energy (DOE) - Energy Efficiency & Renewable Energy (EERE)

This project will merge NREL’s highly robust biomass fractionation and fermentation technology and NCSU’s highly robust graphitization technology to convert two waste streams that are increasingly problematic in the southeastern US and Caribbean states (hurricane-damaged wood waste and Sargassum seaweed) into Sustainable Aviation Fuel (SAF) and graphite for lithium ion batteries (LIB), as shown in Figure 1. NREL has developed fractionation technology for biomass and algae that solubilizes carbohydrates and proteins of varying composition into fermentable hydrolysates. Hydrolysates from woody biomass contain abundant carbohydrates but are typically nutrient-poor for fermentation and require added nutrients, such as nitrogen. Algae (both micro- and macroalgae) hydrolysates are also rich in carbohydrates but are often over-rich in nutrients. Thus, combining these two waste stream hydrolysates in an appropriate ratio will maximize fermentation productivity of SAF precursor (ethanol) while keeping wood waste and Sargassum out of landfills. NCSU and NREL have also demonstrated synthesis of battery-grade graphite from a variety of sustainable feedstocks, including pyrolysis oil, lignin, and cellulose using metallic iron catalysts. This technology is also expected to work well with the insoluble residues from the waste streams described above. The proposed fermentation pathway presents a viable pathway to helping reach BETO’s goal of producing 3 billion gal/year of SAF and the graphite production is compatible with the rapidly growing market for LIB (20% per annum) for portable electronics and electric vehicles.

View all grants